Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
نویسندگان
چکیده
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed 'lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.
منابع مشابه
Membrane-Assisted Growth of DNA Origami Nanostructure Arrays
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with choleste...
متن کاملDNA origami: synthesis and self-assembly.
DNA origami is an emerging technology for designing defined two- and three-dimensional (2D and 3D) DNA nanostructures. Here, we report an introductory practical guide with step-by-step experimental details for the design and synthesis of origami structures, and their size expansion in 1D and 2D space by means of self-assembly.
متن کاملComplex DNA nanostructures from oligonucleotide ensembles.
The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, ...
متن کاملProgramming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, he...
متن کاملKnitting complex weaves with DNA origami.
The past three decades have witnessed steady growth in our ability to harness DNA branched junctions as building blocks for programmable self-assembly of diverse supramolecular architectures. The DNA-origami method, which exploits the availability of long DNA sequences to template sophisticated nanostructures, has played a major role in extending this trend through the past few years. Today, tw...
متن کامل